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The statistical characteristics of third-order moments (triple products) of velocity 
and scalar have been investigated from both experimental and theoretical points of 
view. The third-order moments have a highly intermittent nature and are dominated 
by coherent motions in shear-generated turbulence. Using a previously developed 
statistical method (Nagano & Tagawa 1988), the similarity between the Reynolds 
stress and scalar flux transport was analysed. On the basis of the experimental 
results, we have developed an entirely new approach to the modelling of triple 
products, and constructed a ‘structural ’ turbulence model for triple velocity and 
scalar products. This model has a simple form and universal applicability, and its 
effectiveness has been tested by application to  various types of flow. 

1. Introduction 
As the most advanced mathematical models of turbulence, the Reynolds-stress 

and scalar-flux equation models (e.g. Lumley 1978) have often been used to analyse 
transport phenomena in various types of turbulent flows. However, despite the 
widespread expectation that these models ought to be accurate, their record of 
success thus far does not appear to justify this opinion. I n  a previous study (Nagano 
& Tagawa 1988), we have shown that one important cause is the breakdown of the 
conventional models for triple products of velocity and scalar (third-order moments). 
To resolve the underlying problems involved in the conventional gradient- type 
diffusion modelling of triple products, we investigated the statistical characteristics 
of third-order moments from both experimental and theoretical points of view and 
reached the following conclusions (Nagano & Tagawa 1988) : (i) the statistical 
characteristics of third-order moments such as probability distributions and internal 
structures are essentially dominated by the dynamical flow structures ; hence, (ii) for 
appropriately modelling the turbulent diffusion terms in the second-order closure 
models, we need to develop a new model based not on the unreal assumption of 
gradient-type diffusion but on the physical behaviour of triple products. 

Representative existing models for triple products are those proposed by Daly & 
Harlow (1970), Hanjalid & Launder (1972b) and Cormack, Leal & Seinfeld (1978) for 
a velocity field, and by Donaldson, Sullivan & Rosenbaum (1972), Deardorff (1973), 
Owen (1973) and Wyngaard & Cot6 (1974) for a scalar field. These models are 
frequently used, mainly because of the formal simplicity of their equations. Key 
points of these models, however, are based on a somewhat intuitive assumption of 
gradient-type diffusion. Hence, their use sometimes leads to incorrect results even in 
a qualitative sense (see Nagano & Tagawa 1988). 

Chandrsuda & Bradshaw (1981) investigated the detailed turbulence structure of 
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a reattaching mixing layer over a backward-facing step and pointed out that any 
calculation method intended to deal with reattaching flows should include a fairly 
sophisticated model for triple products, preferably based on the triple-product 
transport equation. Modelling of triple products based on their transport equations 
has been done by Hanjalid & Launder (1972 b ) ,  Deardorff (1978), Andre et al. (1979), 
Dekeyser & Launder (1985), Amano, Goel & Chai (1988) and Amano & Chai (1988). 
Hanjalid & Launder (1972b) derived a simple model through omission or modelling 
of each term in a triple-product transport equation. As stated above, the final form 
of this model resulted in a gradient-type diffusion representation, and thus its 
applicability is limited. On the other hand, Andre et al. (1979) and Dekeyser & 
Launder (1985) modelled all the terms which appear in the transport equations of 
triple products of velocity and scalar so as to make the models more universal. 
However, although the modelled equations are numerous and complicated, 
application to  an asymmetric heated jet (Dekeyser & Launder 1985) results in little 
improvement in the calculated results. Amano et al. (1988) and Amano & Chai (1988) 
also modelled the transport equations of triple products in a manner similar to 
Dekeyser & Launder (1985), and calculated the backward-facing step flows reported 
by Chandrsuda & Bradshaw (1981) and Driver & Seegmiller (1985). Improved results 
can be seen in the predictions, but the systems of modelled equations seem also too 
numerous and complex to readily incorporate in the second-order closure modelling. 

In  the present study, we aim at providing a new representation of triple velocity 
and scalar products. First, we apply the previously developed statistical method 
(Nagano & Tagawa 1988) to an analysis of the measurement of wall turbulence with 
a passive scalar to understand the further details of statistical characteristics of 
triple products. Next, we construct a 'structural model' for triple products from an 
entirely new point of view on the basis of the experimental facts. The performance 
of the proposed model is tested by applications to various types of flows. 

2. Experimental facility and data acquisition 
The experimental set-up used for the present study is the same as that of Nagano 

& Tagawa (1988). The experiment was performed in an air flow in a 45.68 mm ID 
tube heated to a uniform wall temperature of 100'C. Both velocity and scalar 
(thermal) fields were fully developed a t  a measurement location. The centreline 
velocity and temperature were 17.2 m/s and 41.2 "C. Reynolds numbers based on 
bulk velocity and pipe diameter, and on centreline velocity and momentum thickness 
are 40000 and 1032, respectively. Fluctuations of velocity components, u 
(streamwise) and v (normal), and scalar (temperature), 8, were simultaneously 
measured with a specially devised three-wire probe comprised of two hot and one 
cold wires (Nagano & Tagawa 1988). For each set of u-, v- and 0-fluctuations, all data 
were digitized with a 12-bit analog-to-digital converter at a sampling frequency of 
32 kHz. There were 65536 pieces of data per measurement. Measurement uncertainty 
was estimated in conformity with the ANSI/ASME standard, PTC 19.1-1985 (1986), 
and with Bendat & Piersol (1971). The statistical analysis of the data was performed 
on a FACOM M-780/20 computer system. 
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FIQURE 1. Simultaneous signal traces of third-order moments Ga, 626 and 666 (y’ = 37.1). 

3. Detailed statistical characteristics of third-order moments 
3.1. Instantaneous signals of third-order moments 

To describe the production mechanism of triple products, first we investigated the 
simultaneous signal traces of third-order moments. Figure 1 shows sample 
instantaneous signals of v3, vuv and vv6 together with u-, v- and &fluctuations, which 
are recorded at y+ = 37.1 where the time-averaged absolute values of triple products 
become nearly maximum (Nagano & Tagawa 1988). In this figure and also in what 
follows, a circumflex denotes the normalization by the respective r.m.s. value. 
Obviously, all third-order moments fluctuate very intermittently and almost 
symmetrically about zero except for infrequent, very large-amplitude fluctuations. 
These features are quite different from those of the second-order moments such as 
Reynolds shear stress, uv,  and scalar flux, v6 (Nagano & Hishida 1990). Large- 
amplitude fluctuations of triple products are associated only with the fluid motions 
categorized as the second- and fourth-quadrant events in the (u,v)-plane. These 
motions are termed the Q2- and Q4-motions, respectively, and reflect the very 
important motions of ejections and sweeps, which are known as the basic flow 
modules of coherent structures in wall turbulence. Just  as the Q2- and Q4-motions 
contribute greatly to the production of EU and a, so these motions can be regarded 
as the main contributors to the production process of triple products as observed in 
figure 1 .  Very large-amplitude fluctuations of v3, vuv and vv0 are slightly skewed to 
the positive, negative and positive sides, respectively, and this delicate imbalance 
determines the net values of triple products of velocity and scalar. 

3.2. Skewness and jhtness factors of third-order moments 
The previous analysis (Nagano & Tagawa 1988) revealed the general characteristics 
of probability density functions (p.d.f.s) of third-order moments. Here, to determine 
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FIGURE 2. Skewness and flatness factors of vuw and vvB. (a)  Skewness factors. Experiments: 0, 
S(vuv); m, S(vvr3). Measurement uncertainty at 95% coverage: 18%. (b )  Flatness factors. 
Experiments : 0, P(vuv) ; m, F(vw0). Gaussian values calculated from (4) : -, F(vuv) ; ---, 
F(vvr3). Measurement uncertainty a t  95 % coverage : +33 YO. 

these features quantitatively, we investigate the skewness and flatness factors of 
third-order moments. The skewness and flatness factors, X(x) and F ( x ) ,  are 
respectively defined by _______ 

S(X) = (x-Z)3/[(J:-q2]~, ( 1 )  

F ( x )  = ( X - Z ) 4 / [ ( X - Z ) 2 ] 2 ,  ( 2 )  
-- 

where an overbar denotes an expected value or time average. If a joint p.d.f. P(u, 
v, 0 )  is Gaussian, the skewness factor of any third-order moment is consistently zero. 
On the other hand, using the Isserlis' rule for Gaussian fields (Monin & Yaglom 1971), 
we can write the Gaussian flatness factors for x = x!, x1 xi and x1 x2 x3 as follows : 

(3)  

(4) 

- ( 5 )  

F(x:)  = 10395/15' = 46.2, 

F ( x ,  xi) = [315 + 5040Rf2 +5040R;',]/(3+ 12R:2)2, 

F(xl xz x,) = [27 + 2l6a,( 1 + 2a,) + 576a2(3 + 2a1 + 3a,) - 360a,]/( 1 + 2a, + 8a2)' 

a, = R:,+R:,+Ri,, a2 = R,,R,,R,,, a3 = R&+R&+R4,,, 
- 

~ where R12, R,, and - R,, are the correlation coefficients defined as R,, = iliz, R,, = 
R, R3 and R,, = iz i,, respectively. 
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It is the third-order moments m and vv8 that play an important role in the 
Reynolds-stress and scalar-flux equation modelling. Figure 2 (a ,  b )  shows the 
measurements of skewness and flatness factors of wuw and w w 8 ,  respectively. As seen 
in figure 2(a), S(wuw) and S(ww8) behave like a reflected image about zero. Their 
absolute values are nearly constant a t  5 in the log-law region, but very near the wall 
(y' < 30), they change very steeply. These distinct features are mainly the 
consequence of coherent motions in wall turbulence. The Q4-motions (u > 0, ti < 0) 
dominate over the Q2-motions (u < 0, w > 0) near the wall (y' < 15) and vice versa 
in the region away from the wall; hence, S(wuw) turns from negative to positive as the 
wall is approached. Similar characteristics can also be seen in S(ww8). Thus, because 
the Q4-motions with 8 < 0 and Q2-motions with 8 > 0 are prominent in a heated wall 
turbulence (Nagano & Tagawa 1988), S(ww8) becomes negative in the region y+ < 15 
and positive further out. Consequently, though with opposite signs, S(ww6) and S(wuw) 
become very similar. 

Figure 2 ( b )  shows the flatness factors of wuw and vw8, compared to the calculations 
from (4). Usually, high flatness factors correspond to intermittent signals. As shown 
in figure 2 ( b ) ,  F(wuw) and F(ww8) are very high, amounting to as high as 80 in the log- 
law region, which further corroborates the fact that  the third-order moments possess 
a very highly intermittent nature. Note that flatness factors of u, w and 8 are about 
3 in the same region. Also important is the fact that the distributions of F(wuw) and 
F(ww8) are nearly identical over the entire flow zone. This fact together with a close 
similarity in skewness suggests that the triple products wuw and w w 8  are governed by 
identical physical laws. 

The flatness factors, F(wuv) and F(wwO), have their minima a t  about y+ = 15 where 
the corresponding skewness factors become zero. This is a characteristic common to 
other lower-order moments F ( u ) ,  F(w), F (@,  F(uv ) ,  F (u8)  and F(w8) (Zarid 1979; 
Durst, Jovanovic & Kanevce 1987). It should also be noted here that the calculated 
Gaussian values from (4) are almost constant over the entire region, agreement with 
the experiments being seen only in a part of the log-law region. 

From these results, we may conclude that the triple products vuw and vw8 have 
similar statistical characteristics different from the Gaussian, which are under the 
strong influence of coherent structures. 

3.3. Fractional contributions of coherent motions to triple products of 
velocity and scalar 

Coherent structures in turbulence can be described appropriately with fluid motions 
classified in the (u, w)-plane. The fractional contributions of different quadrant 
motions to vzv and vv8 are shown in figure 3 (a ,  b ) ,  respectively. A prime denotes the 
normalization of velocity and scalar (temperature) by the friction velocity and 
friction temperature, respectively. As is apparent from figure 3, the turbulent 
transport of rn and 3, i.e. and vv8, are dominated almost completely by the Q2- 
(i = 2) and Q4-motions (i = 4), and hence the net values are determined by the 
disparity in contributions between these two types of motions. The interactive fluid 
motions classified into the first- and third-quadrants in the (u, w)-plane, i.e. Ql- and 
Q3-motions, contribute very little to the net values because both contributions are 
quite small in absolute value and the signs cancel out. In  short, the triple products 
of velocity and scalar are determined by the dynamic fluid motions such as the 
ejections (Q2-motions) and sweeps (Q4-motions). And this may explain why the 
triple products could not be described adequately by a conventlional static model 
such as gradient-type diffusion of second-order moments. 
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FIQURE 3-FractN contributions of different quadrant motions to the third-order moments 
2)uzI and ww0. (a) (wuw),. Experiments : 0, i = 1 ; 0, i = 2 2  i = 3 ; , i = 4. Calculations from 

0,  i = 3; 0 ,  i = 4. Calculations from (22): -, i = 1; -, i = 2 ;  ---, i = 3; ---, i = 4. 
i = 2 . - - -  i = 3  ; -_- , i = 4. ( b )  (wwO)i. Experiments: a, i = 1 ; 0, i = 2; (21) : -, i = 1 ; -, 3 ,  

Now, to describe theoretically the above-mentioned behaviour of triple products, 
we use the previously developed statistical theory for non-Gaussian fields (Nagano & 
Tagawa 1988) outlined below. 

With 4, 6 and 0 as random variables, the characteristic function $, which is the 
Fourier transform of the p.d.f., can be written as 

If a proper form is given to theAcharacteristic function $ defined by (6), the three- 
dimensional joint p.d.f. P(4,6,6) can be obtained by executing the inverse Fourier 
transform of 9. Hence, we describe the characteristic function $ in terms of a 
cumulant kpqrr which is defined as 

where K = p + q + r .  
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Integration of (7) leads to 

On the other hand, the definition of a moment mpgr is 

Equations (6) and (9) give 

Thus, from (7) and (lo), we obtain the following relations between mpqr and kpqr: 

mOOO= 1,k,,,=O forK=O; 

mpgr = kpgr for 14 K < 3; 

for K = 4. 

- 
I "  where k,,, = ml10 = uv  = R,,, k,,, = R,, and k,,, = R,,. Obviously, (12) can be 

rewritten as 
m 

$ ( f , s , C )  = exP{-%?+72+YL)) c C p q r i K t p v C ,  (13) 
P, qP r--0 

where Cpgr is the coefficients in the power-series expansion of (12). 

Fourier transform, we obtain the following general representation for P(d, 4,e)  : 
Substituting the characteristic function (13) into (6) and performing the inlverse 

where H f l ( ~ )  is an Hermite polynomial defined by 



The coefficients listed above are determined from the measured correlations up to the 
fourth order (see (11)). 

Next, to represent the fractional contributions to the moment d v m P  from Qi- 
motions classified in the (u, v)-plane, we calculate ( d v m  B"), separately in each 
quadrant of the (u, v)-plane with (14) : 

where uu,i and u,,, are sign functions which represent the signs of u and v of the ith 
quadrant in the (u, w)-plane : 

uu,i = (1, -1 ,  - 1 ,  l ) ,  Uv, i  = ( l , l ,  - 1 ,  -1) .  (18) 

For example, for i = 2, we have (uU,$, 
(17) yields 

= ( -  1 , l ) .  Substitution of (14)-(16) into 

where Bj,k is defined as 

For (vuv), (with I = 1 ,  m = 2, n = 0) and (wvB), (with I = 0, m = 2, ?z = l),  equation 
(19) is reduced to 

1 - _ .  

(dzid), = yli; + u,, , - 1 (' +2c220-'400) 
2(2R)' 

and 



A structural turbulence model for triple products 647 

-4  - 
-4  0 4 

ti 

(4 
4 

6 0  , 

-4  
-4 0 4 

a 

ti I -0.2 
a 

1-0.2 

FIGURE 4. Experimental distributions of the weighted p.d.f.s of -646 and 666 (y' = 37.1). 
( a )  -wci6; ( b )  K6(j. 

Curves in figure 3 represent the theoretical predictions from (21) and (22), and it 
can be seen that they reproduce the above-mentioned dynamic behaviour of the 
third-order moments rFasonably well. On the other hand, if a Gaussian distribution 
is assumed for P(6,  6, 0), the fractional contributions of Q2- and Q4-motions to any 
third-order moment become equal, though with opposite signs. Hence, the foregoing 
important characteristics of third-order moments cannot be fully described. 

3.4. Weighted p.d.f.s of vuv and vvO in the (u,v)-plane 
The analysis of fractional contributions in the (u, v)-plane alone is not sufficient to 
ascertain the detailed correspondence between fluid motions and production 
processes of triple products. Hence, we investigate the weighted p.d.f., W,(& 6), of 
triple products VZZD and vv8 in the (u, v)-plane (Nagano & Tagawa 1988) : 

This function provides a powerful tool to see which fluid motion makes a large 
contribution to  the production of the triple products. The integrated value of 
W,(ii, 4) in each quadrant becomes the fractional contribution m, and integration 
over the whole (u, v)-plane reduces to the conventional tim$-averaged value Z. 

The experimental distributions of W, for x = -664 and 646' a t  y+ = 37.1 are shown 
in figure 4 (a ,  b ) ,  respectively. In  the contour maps of figure 4, solid and broken lines 
respectively represent positive and negative values, and interval between successive 
contour lines is 0.02. There is a strong resemblance between these two figures, which 



648 Y .  Nagano and M .  Tagawa 

suggests that there exists a close similarity in the detailed generation process 
between W and vv8, thus substantiating the results in $3.2. Furthermore, we can 
clearly see that the large-amplitude Q2-motions contribute significantly to m and 
vv8. This fact accords with the results shown in figure 3. 
- 

4. Structural modelling of triple velocity and scalar products 
4.1. Structural turbulence model for triple products in velocity Jield 

As suggested from the statistical analysis in $3, the turbulent transport of second- 
order moments has a highly intermittent nature and is dominated almost completely 
by the coherent structures in a turbulent shear flow. Hence, we may utilize this 
experimental fact for modelling the triple products. 

Considering the structural similarity which is common to shear-generated 
turbulence (Lee, Kim & Moin 1987 ; Moin 1990), we can expect wide applicability of 
the foregoing quadrant analysis. The Q2- and Q4-motions, which correspond to the 
ejections and sweeps, are found to play a key role in determining the internal 
structures of turbulence statistics in wall turbulence. On the other hand, the Q1- and 
Q3-motions are important in pattern recognition of the coherent structures in wall 
turbulence (Nagano & Hishida 1990). However, as shown in figure 3, we may discard 
the contributions of Ql- and Q3-motions to the net values of the triple products. This 
can be described by the following equations for m and 2: 

- - 
mm 25 (vuv),,,+ (VUV),,,, (24) 

vu2 x ( w u 2 ) i - z +  (VU2)+,. (25)  
- _ _  - 

The calculations from (21), as shown in figure 3 ( a ) ,  agree well with the experiment. 
Hence, substituting (21) into (24), we may model the triple product based on the 
physical behaviour. The result is 

= +W--[62;2+$!3(V)]. 1 -  
x 

A similar calculation for (25) yields 

where X(x) is the skewness factor of a stochastic variable x (=  p). From (26) and 
(27), m and 2121.2 can be represented with S(u) and S ( w )  as 

rn = C[S(u) + Cr&x S(v)] ,  (28 ) 

6222 = C[Cr,~x~(u)+S(v)], (29) 
- 

1 
C =  

3[($x)Z- 11 ' 

where urn represents a sign function introduced to make a model independent of a 
coordinate system : 

(31) 
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j = 4  
u < 0, v < 0 u < 0, v > 0 
Q3-motion QCmotion 

0 < 0, e < o v > 0, e < o 
sweep (Outward interaction) 

Wallward interaction Sweep 

FIQURE 5. Correspondence between quadrant motions and events in the (v, 0)-plane. 

For VED, a, is equal to - 1 because x = m < 0. We term the present model such as 
(28) or (29) a 'structural' model for a triple product, since it is constructed on the 
basis of the structure of turbulence. The usefulness of the present structural model 
is discussed in $6. 

4.2. Structural turbulence model for triple products in a scalar field 

We can also apply the theoretical approach of $4.1 to the modelling of triple products 
in a scalar field, w w 8 ,  we2, vu8, etc. As with the triple products in a velocity field, those 
in a scalar field are also determined by the Q2- and Q4-motions (see figure 3b).  In 
modelling vv8 and v82, however, the analysis in the (w, 19)-, instead of the (u, w)-plane 
makes the modelling much simpler, because we can use exactly the same procedure 
as in the modelling of vuv and 2)u2. 

In  heated wall turbulence, since the Q2-motions (w > 0) with I9 > 0 and Q4-motions 
(v < 0) with 8 < 0 are most probable (Nagano & Tagawa 1988), the ejections and 
sweeps are classified approximately into the first and third quadrants in the (v,O)- 
plane. While the quadrants corresponding to the Q l -  and Q3-motions cannot be 
specified clearly in the (w, @-plane, we may catalogue the relation between the (u, w)- 
plane and (w, O)-plane as presented in figure 5.  In  the following, a quadrant in the 
(u,w)-plane and that in the (w78)-plane are denoted by the suffixes i and j, 
respectively. - 

Figure 6 (a, b), respectively, shows the measurements of ( w v ~ ) ~  and (w02),, compared 
with the theoretical predictions from the following equation, which is derived using 
the same procedure as for (17) : 

_ -  

au,,= (1, -1 ,  - l , l ) ,  /To,,= ( l , l ,  - 1 ,  -1) .  (33) 
As seen from these figures, the fractional contributions wi th j  = 1 and 3 overwhelm 
those with j = 2 and 4, and thus the correspondence shown in figure 5 is almost 
completely satisfied. Hence, the structural models for vv8 and can be writ,en as 

(34) 

(35) 

7 1 $68 x 7 
( w W I 9 ) j - l +  (6CO)j-3 = C[~,hSS(V) +S(@l, 

6192 = ( v " e 2 ) r - l + ( w ) 3 - 3  = c[s(~)+a,inwm - r n  I 
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FIGURE 6. FractioAal contributionsofdifferent events in the (TJ, @)-plane to the third-order 
moments vv8 and v02. (a) (vv8)j, ( b )  ( ~ 8 ~ ) ~ .  Experiments: 0 ,  j = 1 ; 0,  j = 2 ;  0 ,  j = 3 ;  0 ,  j = 4. 
Calculations from (32)  : -, j = 1 ; -, j = 2 ;  ---, j = 3;  ---, j = 4. 

where C is identical to (30) and a, is defined by (31). Similarly, we can model u28 and 
U 0 2 .  

On the other hand, if we model a on the basis of the fractional contributions in 
the (u,v)-plane (figure 3 b ) ,  from (22 )  we obtain 

Rewriting (36) gives 

(37) 
1 7 

$60 = vm;n ~ $ 0 .  

Using (37) with (34) for vv0, vu0 can be predicted from the skewness factors S(v)  and 
___  

S(0) .  
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5. Verification of structural models for triple products 
The existence of structural similarity (Moin 1990) in shear-generated turbulence 

raises great expectations for the universality of the present structural models. In this 
section, we test the present structural models by application to  various types of flows 
for which experimental results for triple products have been reported. 

5.1. Appraisal in velocity jields 
To assess the performance of the model, predictions for the following twelve test 
cases are shown in figures 7 (a-k) and 8, and compared to the experimental data : 

(a )  pipe flow (Nagano & Tagawa 1988); figure 7(a) 
(b) flat-plate boundary layer (Murlis, Tsai & Bradshaw 1982); figure 7(b)  
( c )  boundary layer on concave surface (Barlow & Johnston 1988); figure 7(c) 
( d )  boundary layer on concave surface (Shizawa & Honami 1986); fignre 7(d) 
(e) boundary layer on convex surface (Verriopoulos 1983) ; figure 7 (e) 
(f) asymmetric flow in a plane channel (Hanjalic' & Launder 1972a) ; figure 7 (f) 
(9 )  conical diffuser flow (Azad & Ozimek 1986) ; figure 7 (9)  
( h )  relaxing flat-plate boundary layer (Miiller 1987) ; figure 7 (h) 
(i) wall jet (Irwin 1973) ; figure 7 (i) 
(j) two-dimensional mixing layer (Wygnanski & Fiedler 1970) ; figure 7 (j) 
(k) jet (Dekeyser & Launder 1985) ; figure 7 (k) 
(1) backward-facing step flow (Driver & Seegmiller 1985) ; figure 8. 
Figure 7(a-k)  shows that the present models (28) and (29) can satisfactorily 

reproduce the experiments not only in a qualitative sense but also quantitatively. 
Although the present structural models are established based essentially on the fact 
of wall turbulence, the high level of universality of the models is well worth noting. 
We believe that this indicates the existence of structural similarity in the generation 
process of the triple products in a variety of flows. 

Figure 8 shows the comparison of predictions from (28) and (29) with 
measurements in a backward-facing step flow. Also included are those predicted from 
gradient-type diffusion models and those from a transport equation model (Amano 
& Chai 1988). A notable improvement upon the conventional models is seen in the 
transport model results of Amano & Chai (1988). However, the results for y/H < 0.5 
are still unsatisfactory. On the other hand, tfhe present structural model results agree 
well with the experiments. 

5.2. Appraisal in scalar Jields 

The values of vv8 and v82 calculated from (34) and (35) and of Vue from (37) are shown 
in figures 9 and 10, respectively, which cover: 

(a) heated pipe flow (Nagano & Tagawa 1988) ; figures 9 (a) and 10 
(b) heated boundary layer on convex surface (Verriopoulos 1983) ; figure 9 (b). 
Figure 9 shows that the structural model for v82 reproduces the experiments as 

accurately as those for velocity fields. On the other hand, predictions of a are 
rather smaller than measurements. However, since there are few data available, we 
cannot discuss this problem further a t  the present stage. 

Predictions of vu8 are shown in figure 10, in which a dashed line represents the 
model results of (37) calculated using the experimental values of a, and the solid 
line denotes those from (37) using (34). It appears that both lines well represent the 
experimental distribution. 
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FIGURE 7.  Tests of the structural models (28) and (29) in various types of flows. (a) Pipe flow 

(28); ---, w&predicted from (20). Measurement uncertainty at 95% coverage: _+20% for VUV; 
f 18% for vu'. ( b )  Flat-plate boundary layer (Murlis et al. 1982). Kotation as in (a ) .  ( c )  Boundary 
h e r  on concave surface (Barlow & Johnston 1988). Experiments on curved surface: 0 ,  E; a, 
- vu2. Model results for curved surface : -, 2)u2r; ---, Experiments on flat surface : 0, ZIUV ; m, 
vu2. Model results for flat surface: -, VUV; ---, vuz. ( d )  Boundary layer on concave surface 
(Shizawa & Honami 1986). Kotation as in (a). ( e )  Boundary layer on convex surface (Verriopoulos 

(Nagano &Tagawa 1988). Experiments: 0, m; a, vuz. Models results: -, - vuv predicted from 
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Launder 1985). Pu’otation as in (a).  

-8 -4  0 4 8 12 



654 Y.  Nagano and M .  Tagawa 

1 .o 

- 
- 0  
uuu 

UL 

- 1.0 

10-3 

(4 X' = -0.03 

0 0 

o o o  

1 .o 

-1.0 

0 0.5 1 .o 1.5 

x 1 0 - ~  

0 0.5 1 .o 1.5 
Y I H  

FIGURE 8. Comparison of model results for a backward-facing step flow. Model results: -, 
present; -, Amano & Chai (1988); ---, Daly & Harlow (1970)~---, Hanjali6 & Launder 
(19723). Experiments: 0, Driver & Seegmiller (1985). (a) 2)u2); (3) vu2. 

6. Usefulness of structural turbulence models for triple products 
There are several particularly useful aspects of the present structural models for 

triple products. 
When calculating triple products from their transport equations, we can 

substantially reduce the number of equations to be modelled. Thus, just S(u), S(w) 
and S(8) are sufficient for representing m, z, wu8, we2, vu8, u28 and z. But to 
obtain the skewness factors S(u),  S(w) and S(8) ,  modelling the transport equation of 
a single component third-order moment 3 is required. However, this modelling is 
much simpler than that needed for general triple products x1x2x3 as described in 
Nagano & Tagawa (1990). 

Also, we may simplify parameters characterizing triple products. For example, 
since the skewness factors S(u) and S(8)  are nearly equal to zero in the log-law region 
of wall turbulence (Nagano & Tagawa 1988), we can see that X(v) dominates the 
behaviour of other triple products. To cite another example, when the relation 
S(u) = -S(v) holds as seen in a backward-facing step flow (Chandrsuda & Bradshaw 
1981 ; Driver & Seegmiller 1985), other triple velocity products are represented by a 
single parameter S(u) (or S(w)). Hence, we can see that a detailed investigation of X(u) 
is most crucial in this case. 

Finally, a cautionary note must be added. In  the present structural models, the y- 
axis (with velocity component v) and the x-axis (with u) need to be fixed in the 
direction normal to the principal shear plane and parallel to it,  respectively. Flow 

-- -- 
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analyses of importance in science and technology, however, are usually performed 
using such coordinate systems, and hence the present structural models may be used 
widely. 

7. Conclusions 
The statistical characteristics of third-order moments (triple products) in wall 

turbulence have been investigated from both experimental and theoretical points of 
view. On the basis of the results, we have made a new approach to the modelling of 
triple products of velocity and scalar needed in the Reynolds-stress and scalar-flux 
equation models. The results can be summarized as follows. 

(i) The third-order moments in wall turbulence have a highly intermittent nature 
and are dominated almost completely by the coherent motions such as ejections and 
sweeps. 

(ii) A very close similarity exists between the turbulent transport of the Reynolds 
shear stress vu and scalar flux 3. 

(iii) The structural turbulence models for triple products are constructed using 
physical behaviour of these quantities (equations (28), (29), (34), (35) and (37)). The 
models have simple forms and universal applicability, and their effectiveness has 
been tested by application to various types of flows. 
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